Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Sci Transl Med ; 16(729): eadi2403, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38198569

RESUMO

How rapid-acting antidepressants (RAADs), such as ketamine, induce immediate and sustained improvements in mood in patients with major depressive disorder (MDD) is poorly understood. A core feature of MDD is the prevalence of cognitive processing biases associated with negative affective states, and the alleviation of negative affective biases may be an index of response to drug treatment. Here, we used an affective bias behavioral test in rats, based on an associative learning task, to investigate the effects of RAADs. To generate an affective bias, animals learned to associate two different digging substrates with a food reward in the presence or absence of an affective state manipulation. A choice between the two reward-associated digging substrates was used to quantify the affective bias generated. Acute treatment with the RAADs ketamine, scopolamine, or psilocybin selectively attenuated a negative affective bias in the affective bias test. Low, but not high, doses of ketamine and psilocybin reversed the valence of the negative affective bias 24 hours after RAAD treatment. Only treatment with psilocybin, but not ketamine or scopolamine, led to a positive affective bias that was dependent on new learning and memory formation. The relearning effects of ketamine were dependent on protein synthesis localized to the rat medial prefrontal cortex and could be modulated by cue reactivation, consistent with experience-dependent neural plasticity. These findings suggest a neuropsychological mechanism that may explain both the acute and sustained effects of RAADs, potentially linking their effects on neural plasticity with affective bias modulation in a rodent model.


Assuntos
Transtorno Depressivo Maior , Ketamina , Humanos , Ratos , Animais , Transtorno Depressivo Maior/tratamento farmacológico , Ketamina/farmacologia , Psilocibina , Antidepressivos/farmacologia , Viés , Escopolamina
2.
Mol Psychiatry ; 28(2): 579-587, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36460723

RESUMO

Psychosis in disorders like schizophrenia is commonly associated with aberrant salience and elevated striatal dopamine. However, the underlying cause(s) of this hyper-dopaminergic state remain elusive. Various lines of evidence point to glutamatergic dysfunction and impairments in synaptic plasticity in the etiology of schizophrenia, including deficits associated with the GluA1 AMPAR subunit. GluA1 knockout (Gria1-/-) mice provide a model of impaired synaptic plasticity in schizophrenia and exhibit a selective deficit in a form of short-term memory which underlies short-term habituation. As such, these mice are unable to reduce attention to recently presented stimuli. In this study we used fast-scan cyclic voltammetry to measure phasic dopamine responses in the nucleus accumbens of Gria1-/- mice to determine whether this behavioral phenotype might be a key driver of a hyper-dopaminergic state. There was no effect of GluA1 deletion on electrically-evoked dopamine responses in anaesthetized mice, demonstrating normal endogenous release properties of dopamine neurons in Gria1-/- mice. Furthermore, dopamine signals were initially similar in Gria1-/- mice compared to controls in response to both sucrose rewards and neutral light stimuli. They were also equally sensitive to changes in the magnitude of delivered rewards. In contrast, however, these stimulus-evoked dopamine signals failed to habituate with repeated presentations in Gria1-/- mice, resulting in a task-relevant, hyper-dopaminergic phenotype. Thus, here we show that GluA1 dysfunction, resulting in impaired short-term habituation, is a key driver of enhanced striatal dopamine responses, which may be an important contributor to aberrant salience and psychosis in psychiatric disorders like schizophrenia.


Assuntos
Dopamina , Habituação Psicofisiológica , Camundongos , Animais , Camundongos Knockout , Memória de Curto Prazo , Fenótipo
3.
J Neurosci Methods ; 381: 109705, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36096238

RESUMO

The use of head fixation in mice is increasingly common in research, its use having initially been restricted to the field of sensory neuroscience. Head restraint has often been combined with fluid control, rather than food restriction, to motivate behaviour, but this too is now in use for both restrained and non-restrained animals. Despite this, there is little guidance on how best to employ these techniques to optimise both scientific outcomes and animal welfare. This article summarises current practices and provides recommendations to improve animal wellbeing and data quality, based on a survey of the community, literature reviews, and the expert opinion and practical experience of an international working group convened by the UK's National Centre for the Replacement, Refinement and Reduction of Animals in Research (NC3Rs). Topics covered include head fixation surgery and post-operative care, habituation to restraint, and the use of fluid/food control to motivate performance. We also discuss some recent developments that may offer alternative ways to collect data from large numbers of behavioural trials without the need for restraint. The aim is to provide support for researchers at all levels, animal care staff, and ethics committees to refine procedures and practices in line with the refinement principle of the 3Rs.


Assuntos
Neurociências , Roedores , Criação de Animais Domésticos/métodos , Bem-Estar do Animal , Animais , Alimentos , Camundongos
4.
J Neurosci ; 42(16): 3494-3509, 2022 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-35273086

RESUMO

Several cellular pathways contribute to neurodegenerative tauopathy-related disorders. Microglial activation, a major component of neuroinflammation, is an early pathologic hallmark that correlates with cognitive decline, while the unfolded protein response (UPR) contributes to synaptic pathology. Sleep disturbances are prevalent in tauopathies and may also contribute to disease progression. Few studies have investigated whether manipulations of sleep influence cellular pathologic and behavioral features of tauopathy. We investigated whether trazodone, a licensed antidepressant with hypnotic efficacy in dementia, can reduce disease-related cellular pathways and improve memory and sleep in male rTg4510 mice with a tauopathy-like phenotype. In a 9 week dosing regimen, trazodone decreased microglial NLRP3 inflammasome expression and phosphorylated p38 mitogen-activated protein kinase levels, which correlated with the NLRP3 inflammasome, the UPR effector ATF4, and total tau levels. Trazodone reduced theta oscillations during rapid eye movement (REM) sleep and enhanced REM sleep duration. Olfactory memory transiently improved, and memory performance correlated with REM sleep duration and theta oscillations. These findings on the effects of trazodone on the NLRP3 inflammasome, the unfolded protein response and behavioral hallmarks of dementia warrant further studies on the therapeutic value of sleep-modulating compounds for tauopathies.SIGNIFICANCE STATEMENT Dementia and associated behavioral symptoms such as memory loss and sleep disturbance are debilitating. Identifying treatments that alleviate symptoms and concurrently target cellular pathways contributing to disease progression is paramount for the patients and their caregivers. Here we show that a chronic treatment with trazodone, an antidepressant with positive effects on sleep, has beneficial effects on several cellular pathways contributing to neuroinflammation and tau pathology, in tauopathy-like rTg4510 mice. Trazodone also improved rapid eye movement (REM) sleep, the slowing of brain oscillations, and olfactory memory disturbances, which are all early symptoms observed in Alzheimer's disease. Thus, trazodone and compounds with REM sleep-promoting properties may represent a promising treatment approach to reduce the early symptoms of tauopathy and slow down disease progression.


Assuntos
Doença de Alzheimer , Transtornos do Sono-Vigília , Tauopatias , Trazodona , Doença de Alzheimer/tratamento farmacológico , Animais , Modelos Animais de Doenças , Progressão da Doença , Humanos , Inflamassomos , Masculino , Transtornos da Memória/genética , Camundongos , Camundongos Transgênicos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Sono/fisiologia , Tauopatias/metabolismo , Trazodona/farmacologia , Trazodona/uso terapêutico , Proteínas tau/metabolismo
5.
Brain Neurosci Adv ; 5: 23982128211015110, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34104800

RESUMO

Apathy is widely reported in patients with neurological disorders or post viral infection but is also seen in otherwise-healthy aged individuals. This study investigated whether aged male mice express behavioural and physiological changes relevant to an apathy phenotype. Using measures of motivation to work for reward, we found deficits in the progressive ratio task related to rate of responding. In an effort-related decision-making task, aged mice were less willing to exert effort for high value reward. Aged mice exhibited reduced reward sensitivity but also lower measures of anxiety in the novelty supressed feeding test and an attenuated response to restraint stress with lower corticosterone and reduced paraventricular nucleus c-fos activation. This profile of affective changes did not align with those observed in models of depression but suggested emotional blunting. In a test of cognition (novel object recognition), aged mice showed no impairments, but activity was lower in a measure of exploration in a novel environment. Together, these data suggest aged mice show changes across the domains of motivated behaviour, reward sensitivity and emotional reactivity and may be a suitable model for the pre-clinical study of the psychiatric symptom of apathy.

6.
Neuropsychopharmacology ; 46(6): 1194-1206, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33342996

RESUMO

Cholinergic drugs acting at M1/M4 muscarinic receptors hold promise for the treatment of symptoms associated with brain disorders characterized by cognitive impairment, mood disturbances, or psychosis, such as Alzheimer's disease or schizophrenia. However, the brain-wide functional substrates engaged by muscarinic agonists remain poorly understood. Here we used a combination of pharmacological fMRI (phMRI), resting-state fMRI (rsfMRI), and resting-state quantitative EEG (qEEG) to investigate the effects of a behaviorally active dose of the M1/M4-preferring muscarinic agonist xanomeline on brain functional activity in the rodent brain. We investigated both the effects of xanomeline per se and its modulatory effects on signals elicited by the NMDA-receptor antagonists phencyclidine (PCP) and ketamine. We found that xanomeline induces robust and widespread BOLD signal phMRI amplitude increases and decreased high-frequency qEEG spectral activity. rsfMRI mapping in the mouse revealed that xanomeline robustly decreased neocortical and striatal connectivity but induces focal increases in functional connectivity within the nucleus accumbens and basal forebrain. Notably, xanomeline pre-administration robustly attenuated both the cortico-limbic phMRI response and the fronto-hippocampal hyper-connectivity induced by PCP, enhanced PCP-modulated functional connectivity locally within the nucleus accumbens and basal forebrain, and reversed the gamma and high-frequency qEEG power increases induced by ketamine. Collectively, these results show that xanomeline robustly induces both cholinergic-like neocortical activation and desynchronization of functional networks in the mammalian brain. These effects could serve as a translatable biomarker for future clinical investigations of muscarinic agents, and bear mechanistic relevance for the putative therapeutic effect of these class of compounds in brain disorders.


Assuntos
Agonistas Muscarínicos , Tiadiazóis , Animais , Hipocampo/metabolismo , Camundongos , Agonistas Muscarínicos/farmacologia , Piridinas , Receptor Muscarínico M1/metabolismo , Receptor Muscarínico M4/metabolismo
7.
Sleep ; 43(10)2020 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-32518958

RESUMO

STUDY OBJECTIVES: Sleep restriction (SR) leads to performance decrements across cognitive domains but underlying mechanisms remain largely unknown. The impact of SR on performance in rodents is often assessed using tasks in which food is the reward. Investigating how the drives of hunger and sleep interact to modulate performance may provide insights into mechanisms underlying sleep loss-related performance decrements. METHODS: Three experiments were conducted in male adult Wistar rats to assess: (1) effects of food restriction on performance in the simple response latency task (SRLT) across the diurnal cycle (n = 30); (2) interaction of food restriction and SR (11 h) on SRLT performance, sleep electroencephalogram, and event-related potentials (ERP) (n = 10-13); and (3) effects of food restriction and SR on progressive ratio (PR) task performance to probe the reward value of food reinforcement (n = 19). RESULTS: Food restriction increased premature responding on the SRLT at the end of the light period of the diurnal cycle. SR led to marked impairments in SRLT performance in the ad libitum-fed group, which were absent in the food-restricted group. After SR, food-restricted rats displayed a higher amplitude of cue-evoked ERP components during the SRLT compared with the ad libitum group. SR did not affect PR performance, while food restriction improved performance. CONCLUSIONS: Hunger may induce a functional resilience to negative effects of sleep loss during subsequent task performance, possibly by maintaining attention to food-related cues.


Assuntos
Privação do Sono , Sono , Animais , Eletroencefalografia , Masculino , Ratos , Ratos Wistar , Tempo de Reação
8.
Front Behav Neurosci ; 14: 70, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32581735

RESUMO

The Wistar Kyoto (WKY) rat has been proposed as a model of depression-like symptoms. However, anhedonia-a reduction in the response to normatively rewarding events-as a central depression symptom has yet to be fully assessed in this model. We compared WKY rats and Wistar controls, with stress-susceptibility examined by applying mild unpredictable stress to a subset of each group. Anhedonia-like behavior was assessed using microstructural analysis of licking behavior, where mean lick cluster size reflects hedonic responses. This was combined with tests of anticipatory contrast, where the consumption of a moderately palatable solution (4% sucrose) is suppressed in anticipation of a more palatable solution (32% sucrose). WKY rats displayed greatly attenuated hedonic reactions to sucrose overall, although their reactions retained some sensitivity to differences in sucrose concentration. They displayed normal reductions in consumption in anticipatory contrast, although the effect of contrast on hedonic reactions was greatly blunted. Mild stress produced overall reductions in sucrose consumption, but this was not exacerbated in WKY rats. Moreover, mild stress did not affect hedonic reactions or the effects of contrast. These results confirm that the WKY substrain expresses a direct behavioral analog of anhedonia, which may have utility for increasing mechanistic understanding of depression symptoms.

9.
Neuropsychopharmacology ; 45(5): 793-803, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31703234

RESUMO

In an uncertain world, the ability to predict and update the relationships between environmental cues and outcomes is a fundamental element of adaptive behaviour. This type of learning is typically thought to depend on prediction error, the difference between expected and experienced events and in the reward domain that has been closely linked to mesolimbic dopamine. There is also increasing behavioural and neuroimaging evidence that disruption to this process may be a cross-diagnostic feature of several neuropsychiatric and neurological disorders in which dopamine is dysregulated. However, the precise relationship between haemodynamic measures, dopamine and reward-guided learning remains unclear. To help address this issue, we used a translational technique, oxygen amperometry, to record haemodynamic signals in the nucleus accumbens (NAc) and orbitofrontal cortex (OFC), while freely moving rats performed a probabilistic Pavlovian learning task. Using a model-based analysis approach to account for individual variations in learning, we found that the oxygen signal in the NAc correlated with a reward prediction error, whereas in the OFC it correlated with an unsigned prediction error or salience signal. Furthermore, an acute dose of amphetamine, creating a hyperdopaminergic state, disrupted rats' ability to discriminate between cues associated with either a high or a low probability of reward and concomitantly corrupted prediction error signalling. These results demonstrate parallel but distinct prediction error signals in NAc and OFC during learning, both of which are affected by psychostimulant administration. Furthermore, they establish the viability of tracking and manipulating haemodynamic signatures of reward-guided learning observed in human fMRI studies by using a proxy signal for BOLD in a freely behaving rodent.


Assuntos
Anfetamina/administração & dosagem , Estimulantes do Sistema Nervoso Central/administração & dosagem , Condicionamento Clássico/efeitos dos fármacos , Hemodinâmica/efeitos dos fármacos , Núcleo Accumbens/efeitos dos fármacos , Núcleo Accumbens/fisiologia , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/fisiologia , Animais , Condicionamento Clássico/fisiologia , Masculino , Núcleo Accumbens/irrigação sanguínea , Córtex Pré-Frontal/irrigação sanguínea , Ratos Sprague-Dawley
10.
Front Neurosci ; 13: 735, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31396031

RESUMO

Dynamic gain and loss of synapses is fundamental to healthy brain function. While Alzheimer's Disease (AD) treatment strategies have largely focussed on beta-amyloid and tau protein pathologies, the synapse itself may also be a critical endpoint to consider regarding disease modification. Disruption of mechanisms of neuronal plasticity, eventually resulting in a net loss of synapses, is implicated as an early pathological event in AD. Synaptic dysfunction therefore may be a final common biological mechanism linking protein pathologies to disease symptoms. This review summarizes evidence supporting the idea of early neuroplastic deficits being prevalent in AD. Changes in synaptic density can occur before overt neurodegeneration and should not be considered to uniformly decrease over the course of the disease. Instead, synaptic levels are influenced by an interplay between processes of degeneration and atrophy, and those of maintenance and compensation at regional and network levels. How these neuroplastic changes are driven by amyloid and tau pathology are varied. A mixture of direct effects of amyloid and tau on synaptic integrity, as well as indirect effects on processes such as inflammation and neuronal energetics are likely to be at play here. Focussing on the synapse and mechanisms of neuroplasticity as therapeutic opportunities in AD raises some important conceptual and strategic issues regarding translational research, and how preclinical research can inform clinical studies. Nevertheless, substrates of neuroplasticity represent an emerging complementary class of drug target that would aim to normalize synapse dynamics and restore cognitive function in the AD brain and in other neurodegenerative diseases.

11.
Sleep ; 42(9)2019 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-31106825

RESUMO

Increasing vigilance without incurring the negative consequences of extended wakefulness such as daytime sleepiness and cognitive impairment is a major challenge in treating many sleep disorders. The present work compares two closely related mGluR2/3 antagonists LY3020371 and LY341495 with two well-known wake-promoting compounds caffeine and d-amphetamine. Sleep homeostasis properties were explored in male Wistar rats by manipulating levels of wakefulness via (1) physiological sleep restriction (SR), (2) pharmacological action, or (3) a combination of these. A two-phase nonlinear mixed-effects model combining a quadratic and exponential function at an empirically estimated join point allowed the quantification of wake-promoting properties and any subsequent sleep rebound. A simple response latency task (SRLT) following SR assessed functional capacity of sleep-restricted animals treated with our test compounds. Caffeine and d-amphetamine increased wakefulness with a subsequent full recovery of non-rapid eye movement (NREM) and rapid eye movement (REM) sleep and were unable to fully reverse SR-induced impairments in SRLT. In contrast, LY3020371 increased wakefulness with no subsequent elevation of NREM sleep, delta power, delta energy, or sleep bout length and count, yet REM sleep recovered above baseline levels. Prior sleep pressure obtained using an SR protocol had no impact on the wake-promoting effect of LY3020371 and NREM sleep rebound remained blocked. Furthermore, LY341495 increased functional capacity across SRLT measures following SR. These results establish the critical role of glutamate in sleep homeostasis and support the existence of independent mechanisms for NREM and REM sleep homeostasis.


Assuntos
Tempo de Reação/efeitos dos fármacos , Receptores de Glutamato Metabotrópico/agonistas , Privação do Sono/fisiopatologia , Sono/efeitos dos fármacos , Vigília/fisiologia , Aminoácidos/farmacologia , Animais , Cafeína/farmacologia , Estimulantes do Sistema Nervoso Central/farmacologia , Cicloexanos/farmacologia , Dextroanfetamina/farmacologia , Eletroencefalografia/métodos , Antagonistas de Aminoácidos Excitatórios/farmacologia , Homeostase/fisiologia , Masculino , Ratos , Ratos Wistar , Sono/fisiologia , Privação do Sono/induzido quimicamente , Sono REM/fisiologia , Xantenos/farmacologia
12.
Neurosci Biobehav Rev ; 97: 112-137, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30312626

RESUMO

The high prevalence of sleep disturbance in neurodegenerative and psychiatric conditions is often interpreted as evidence for both sleep's sensitivity to and causal involvement in brain pathology. Nevertheless, how and which aspects of sleep contribute to brain function remains largely unknown. This review provides a critical evaluation of clinical and animal literature describing sleep and circadian disturbances in two distinct conditions and animal models thereof: Alzheimer's disease (AD) and schizophrenia. Its goal is to identify commonalities and distinctiveness of specific aspects of sleep disturbance and their relationship to symptoms across conditions. Despite limited standardisation, data imply that reductions in sleep continuity and alterations in sleep timing are common to AD and schizophrenia, whereas reductions in REM sleep and sleep spindle activity appear more specific to AD and schizophrenia, respectively. Putative mechanisms underlying these alterations are discussed. A standardised neuroscience based quantification of sleep and disease-independent assessment of symptoms in patients and animal models holds promise for furthering the understanding of mechanistic links between sleep and brain function in health and disease.


Assuntos
Doença de Alzheimer/fisiopatologia , Doença de Alzheimer/psicologia , Encéfalo/fisiopatologia , Esquizofrenia/fisiopatologia , Psicologia do Esquizofrênico , Transtornos do Sono-Vigília/complicações , Sono , Doença de Alzheimer/complicações , Animais , Ritmo Circadiano , Modelos Animais de Doenças , Humanos , Modelos Animais , Esquizofrenia/complicações
13.
Neurosci Biobehav Rev ; 97: 47-69, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30399355

RESUMO

Central nervous system diseases are not currently diagnosed based on knowledge of biological mechanisms underlying their symptoms. Greater understanding may be offered through an agnostic approach to traditional disease categories, where learning more about shared biological mechanisms across conditions could potentially reclassify sub-groups of patients to allow realisation of more effective treatments. This review represents the output of the collaborative group "PRISM", tasked with considering assay choices for assessment of attention and working memory in a transdiagnostic cohort of Alzheimer's disease and schizophrenia patients exhibiting symptomatic spectra of social withdrawal. A multidimensional analysis of this nature has not been previously attempted. Nominated assays (continuous performance test III, attention network test, digit symbol substitution, N-back, complex span, spatial navigation in a virtual environment) reflected a necessary compromise between the need for broad assessment of the neuropsychological constructs in question with several pragmatic criteria: patient burden, compatibility with neurophysiologic measures and availability of preclinical homologues.


Assuntos
Doença de Alzheimer/diagnóstico , Doença de Alzheimer/psicologia , Atenção , Encéfalo/fisiopatologia , Memória de Curto Prazo , Esquizofrenia/diagnóstico , Psicologia do Esquizofrênico , Isolamento Social , Doença de Alzheimer/fisiopatologia , Animais , Mapeamento Encefálico , Modelos Animais de Doenças , Eletroencefalografia , Humanos , Relações Interpessoais , Imageamento por Ressonância Magnética , Testes Neuropsicológicos , Projetos de Pesquisa , Esquizofrenia/fisiopatologia
14.
Eur J Neurosci ; 48(9): 2971-2987, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30218588

RESUMO

Goal-directed motivated behaviour is crucial for everyday life. Such behaviour is often measured, in rodents, under a progressive ratio (PR) schedule of reinforcement. Previous studies have identified a few brain structures critical for supporting PR performance. However, the association between neural activity within these regions and individual differences in effort-related behaviour is not known. Presently, we used constant potential in vivo oxygen amperometry, a surrogate for functional resonance imaging in rodents, to assess changes in tissue oxygen levels within the nucleus accumbens (NAc) and orbitofrontal cortex (OFC) in male Wistar rats performing a PR task. Within both regions, oxygen responses to rewards increased as the effort exerted to obtain the rewards was larger. Furthermore, higher individual breakpoints were associated with greater magnitude NAc oxygen responses. This association could not be explained by temporal confounds and remained significant when controlling for the different number of completed trials. Animals with higher breakpoints also showed greater magnitude NAc oxygen responses to rewards delivered independently of any behaviour. In contrast, OFC oxygen responses were not associated with individual differences in behavioural performance. The present results suggest that greater NAc oxygen responses following rewards, through a process of incentive motivation, may allow organisms to remain on task for longer and to overcome greater effort costs.


Assuntos
Motivação/fisiologia , Núcleo Accumbens/metabolismo , Oxigênio/metabolismo , Esforço Físico/fisiologia , Recompensa , Animais , Eletrodos Implantados , Masculino , Consumo de Oxigênio/fisiologia , Ratos , Ratos Wistar , Esquema de Reforço
15.
Alzheimers Res Ther ; 9(1): 77, 2017 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-28931441

RESUMO

BACKGROUND: The choice and appropriate use of animal models in drug discovery for Alzheimer's disease (AD) is pivotal to successful clinical translation of novel therapeutics, yet true alignment of research is challenging. Current models do not fully recapitulate the human disease, and even exhibit various degrees of regional pathological burden and diverse functional alterations. Given this, relevant pathological and functional endpoints must be determined on a model-by-model basis. The present work explores the rTg4510 mouse model of tauopathy as a case study to define best practices for the selection and validation of cognitive and functional endpoints for the purposes of pre-clinical AD drug discovery. METHODS: Male rTg4510 mice were first tested at an advanced age, 12 months, in multiple behavioural assays (step 1). Severe tau pathology and neurodegeneration was associated with profound locomotor hyperactivity and spatial memory deficits. Four of these assays were then selected for longitudinal assessment, from 4 to 12 months, to investigate whether behavioural performance changes as a function of accumulation of tau pathology (step 2). Experimental suppression of tau pathology-via doxycycline administration-was also investigated for its effect on functional performance. RESULTS: Progressive behavioural changes were detected where locomotor activity and rewarded alternation were found to most closely correlate with tau burden and neurodegeneration. Doxycycline initiated at 4 months led to a 50% suppression of transgene expression, which was sufficient to prevent subsequent increases in tau pathology and arrest related functional decline. CONCLUSIONS: This two-step approach demonstrates the importance of selecting assays most sensitive to the phenotype of the model. A robust relationship was observed between pathological progression, development of phenotype, and their experimental manipulation-three crucial factors for assessing the translational relevance of future pre-clinical findings.


Assuntos
Transtornos Cognitivos/etiologia , Progressão da Doença , Transtornos Mentais/etiologia , Desempenho Psicomotor/fisiologia , Tauopatias/patologia , Tauopatias/fisiopatologia , Fatores Etários , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Estudos de Coortes , Discriminação Psicológica/efeitos dos fármacos , Discriminação Psicológica/fisiologia , Modelos Animais de Doenças , Doxiciclina/farmacologia , Masculino , Memória de Curto Prazo/fisiologia , Transtornos Mentais/tratamento farmacológico , Camundongos , Camundongos Transgênicos , Atividade Motora/efeitos dos fármacos , Atividade Motora/genética , Mutação/genética , Desempenho Psicomotor/efeitos dos fármacos , Tauopatias/genética , Proteínas tau/genética
16.
Neuropharmacology ; 126: 257-270, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28757050

RESUMO

6-[(1S)-1-[1-[5-(2-hydroxyethoxy)-2-pyridyl]pyrazol-3-yl]ethyl]-3H-1,3-benzothiazol-2-one (LY3130481 or CERC-611) is a selective antagonist of AMPA receptors containing transmembrane AMPA receptor regulatory protein (TARP) γ-8. This molecule has been characterized as a potent and efficacious anticonvulsant in an array of acute and chronic epilepsy models in rodents. The present set of experiments was designed to assess the effects of LY3130481 on the electroencephelogram (EEG), cognitive function, and neurochemical outflow. LY3130481 disrupted food-maintained responding in rats and spontaneous alternation in a Y-maze in mice. In rat fear conditioning, LY3130481 caused a deficit in trace (hippocampal-dependent), but not in delay fear conditioning. Although these effects on cognitive performances were observed, the known cognitive-impairing anticonvulsant, topiramate, did not always produce deficits under these assay conditions. LY3130481 produced modest increases in wake times in rats. In addition, LY3130481 was able to attenuate some impairing effects of standard antiepileptic drugs. The motor-impairing effects of the lacosamide were attenuated by LY3130481 as was the decrease in non-rapid-eye movement sleep induced by carbamazepine. Evaluation of the effect of LY3130481 on neurotransmitter and metabolite efflux in the rat medial prefrontal cortex, using in vivo microdialysis, revealed significant increases in the pro-cognitive and wake-promoting neurotransmitters, histamine and acetylcholine, as well as in serotonin, telemethylhistamine, 5-HIAA, HVA and MHPG. LY3130481 thus presents a novel behavioral profile that will have to be evaluated in patients to fully appreciate its implications for therapeutics. LY3130481 is currently under clinical development as CERC-611 as an antiepileptic.


Assuntos
Anticonvulsivantes/administração & dosagem , Benzotiazóis/administração & dosagem , Canais de Cálcio/fisiologia , Cognição/efeitos dos fármacos , Córtex Pré-Frontal/efeitos dos fármacos , Pirazóis/administração & dosagem , Acetilcolina/metabolismo , Animais , Comportamento Animal/efeitos dos fármacos , Condicionamento Clássico/efeitos dos fármacos , Eletroencefalografia , Medo/efeitos dos fármacos , Frutose/administração & dosagem , Frutose/análogos & derivados , Histamina/metabolismo , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Nitrilas , Córtex Pré-Frontal/metabolismo , Córtex Pré-Frontal/fisiologia , Piridonas/administração & dosagem , Ratos Sprague-Dawley , Ratos Wistar , Serotonina/metabolismo , Fases do Sono/efeitos dos fármacos , Topiramato
17.
Eur J Neurosci ; 45(7): 912-921, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28186680

RESUMO

Group II metabotropic glutamate receptor agonists have been suggested as potential anti-psychotics, at least in part, based on the observation that the agonist LY354740 appeared to rescue the cognitive deficits caused by non-competitive N-methyl-d-aspartate receptor (NMDAR) antagonists, including spatial working memory deficits in rodents. Here, we tested the ability of LY354740 to rescue spatial working memory performance in mice that lack the GluA1 subunit of the AMPA glutamate receptor, encoded by Gria1, a gene recently implicated in schizophrenia by genome-wide association studies. We found that LY354740 failed to rescue the spatial working memory deficit in Gria1-/- mice during rewarded alternation performance in the T-maze. In contrast, LY354740 did reduce the locomotor hyperactivity in these animals to a level that was similar to controls. A similar pattern was found with the dopamine receptor antagonist haloperidol, with no amelioration of the spatial working memory deficit in Gria1-/- mice, even though the same dose of haloperidol reduced their locomotor hyperactivity. These results with LY354740 contrast with the rescue of spatial working memory in models of glutamatergic hypofunction using non-competitive NMDAR antagonists. Future studies should determine whether group II mGluR agonists can rescue spatial working memory deficits with other NMDAR manipulations, including genetic models and other pharmacological manipulations of NMDAR function.


Assuntos
Compostos Bicíclicos com Pontes/farmacologia , Antagonistas de Dopamina/farmacologia , Agonistas de Aminoácidos Excitatórios/farmacologia , Haloperidol/farmacologia , Hipercinese/metabolismo , Memória de Curto Prazo/efeitos dos fármacos , Receptores de AMPA/genética , Animais , Compostos Bicíclicos com Pontes/uso terapêutico , Antagonistas de Dopamina/uso terapêutico , Agonistas de Aminoácidos Excitatórios/uso terapêutico , Feminino , Haloperidol/uso terapêutico , Hipercinese/tratamento farmacológico , Hipercinese/fisiopatologia , Locomoção/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Receptores de AMPA/antagonistas & inibidores , Receptores de AMPA/metabolismo
18.
Cell Rep ; 18(4): 905-917, 2017 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-28122241

RESUMO

Cholinergic neurotransmission throughout the neocortex and hippocampus regulates arousal, learning, and attention. However, owing to the poorly characterized timing and location of acetylcholine release, its detailed behavioral functions remain unclear. Using electrochemical biosensors chronically implanted in mice, we made continuous measurements of the spatiotemporal dynamics of acetylcholine release across multiple behavioral states. We found that tonic levels of acetylcholine release were coordinated between the prefrontal cortex and hippocampus and maximal during training on a rewarded working memory task. Tonic release also increased during REM sleep but was contingent on subsequent wakefulness. In contrast, coordinated phasic acetylcholine release occurred only during the memory task and was strongly localized to reward delivery areas without being contingent on trial outcome. These results show that coordinated acetylcholine release between the prefrontal cortex and hippocampus is associated with reward and arousal on distinct timescales, providing dual mechanisms to support learned behavior acquisition during cognitive task performance.


Assuntos
Acetilcolina/análise , Nível de Alerta , Hipocampo/metabolismo , Córtex Pré-Frontal/metabolismo , Recompensa , Acetilcolina/metabolismo , Animais , Comportamento Animal , Técnicas Biossensoriais , Técnicas Eletroquímicas , Eletrodos Implantados , Hipocampo/patologia , Locomoção , Masculino , Aprendizagem em Labirinto , Memória de Curto Prazo , Camundongos , Camundongos Endogâmicos C57BL , Córtex Pré-Frontal/patologia , Sono REM , Vigília
19.
J Sleep Res ; 26(2): 179-187, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27739157

RESUMO

While several methods have been used to restrict the sleep of experimental animals, it is often unclear whether these different forms of sleep restriction have comparable effects on sleep-wake architecture or functional capacity. The present study compared four models of sleep restriction, using enforced wakefulness by rotation of cylindrical home cages over 11 h in male Wistar rats. These included an electroencephalographic-driven 'Biofeedback' method and three non-invasive methods where rotation was triggered according to a 'Constant', 'Decreasing' or random protocol based upon the 'Weibull' distribution fit to an archival Biofeedback dataset. Sleep-wake architecture was determined using polysomnography, and functional capacity was assessed immediately post-restriction with a simple response latency task, as a potential homologue of the human psychomotor vigilance task. All sleep restriction protocols resulted in sleep loss, behavioural task disengagement and rebound sleep, although no model was as effective as real-time electroencephalographic-Biofeedback. Decreasing and Weibull protocols produced greater recovery sleep than the Constant protocol, mirrored by comparably poorer simple response latency task performance. Increases in urinary corticosterone levels following Constant and Decreasing protocols suggested that stress levels may differ between protocols. Overall, these results provide insight into the value of choosing a specific sleep restriction protocol, not only from the perspective of animal welfare and the use of less invasive procedures, but also translational validity. A more considered choice of the physiological and functional effects of sleep-restriction protocols in rodents may improve correspondence with specific types of excessive daytime sleepiness in humans.


Assuntos
Atenção/fisiologia , Privação do Sono/fisiopatologia , Sono/fisiologia , Vigília/fisiologia , Animais , Biorretroalimentação Psicológica , Corticosterona/urina , Eletroencefalografia , Masculino , Polissonografia , Ratos , Ratos Wistar , Tempo de Reação/fisiologia , Rotação , Privação do Sono/urina , Análise e Desempenho de Tarefas , Fatores de Tempo
20.
Curr Top Behav Neurosci ; 28: 397-421, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27023366

RESUMO

Measures of neuronal activation are a natural and parsimonious translational biomarker to consider in the context of neuropsychiatric drug discovery studies. In this regard, functional neuroimaging using the BOLD fMRI technique is becoming more frequently employed to not only probe aberrant brain regions and circuits in disease, but also to assess the effects of novel pharmacological agents on these processes. In the ideal situation, these types of studies would first be conducted pre-clinically in rodents to confirm a measurable functional response on relevant brain circuits before seeking to replicate the findings in an analogous fMRI paradigm in humans. However, the need for animal immobilization during the scanning procedure precludes all but the simplest behavioural task-based paradigms in rodent BOLD fMRI. This chapter considers how in vivo oxygen amperometry may represent a viable and valid proxy for BOLD fMRI in freely moving rodents engaged in behavioural tasks. The amperometric technique and several examples of emerging evidence are described to show how the technique can deliver results that translate to pharmacological, event-related and functional connectivity variants of fMRI. In vivo oxygen amperometry holds great promise as a technique that may help to bridge the gap between basic drug discovery research in rodents and applied efficacy testing in humans.


Assuntos
Mapeamento Encefálico/métodos , Encéfalo/diagnóstico por imagem , Neuroimagem Funcional/métodos , Aprendizagem/fisiologia , Imageamento por Ressonância Magnética/métodos , Animais , Descoberta de Drogas , Recompensa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...